Lecture 22 - Dec. 1

Syntactic Analysis

Canonical Collection vs, Subset States Algorithms: closure, goto

Announcements

- Project final submission guideline to be released on Friday
- Review session on Thursday, December 8?

Toput $\varepsilon-N F A$:

output DFA:

CC Construction: closure

Set of subset state k $\rightarrow a$ set of $\angle R(1)$ items
CC Construction: eco
Calculate coo of the following grammar.
Hint. Closure of the singleton set containing the parser's initial state.

CC Construction: COo Step 1
(0) [Goal $\xrightarrow{\checkmark}$. List, oof] initial parser state

Hint 1. How is (A) (B).C(2) I instantiated? Goal ε list ε eq
Hint 2. What are $\mathrm{C} \rightarrow \gamma \in \mathrm{R}$?

\rightarrow List \rightarrow List Pair

Hint 3. FIRST (da) $=$ FIRST $(\varepsilon$ oof $)=$ FIRST $(e d)=\{$ oof $\}$
Two new $L R(1)$ Hems:
How should s be extended?

1. [List \rightarrow - List Pair, , $0 f$]

2. $[$ list \rightarrow - Pair, cot $]$

CC Construction: COo Step 2
(0) [Goal \rightarrow - List, eof]
(1) [List $\rightarrow \bullet$ List Pair, eof]
(2) $[$ List $\rightarrow \bullet$ Pair, oof]

Hint 2. What are $\mathbf{C} \rightarrow \gamma \in \mathbf{R}$? Pair \rightarrow (Terr) Pair \rightarrow ()
Hint 3. $\operatorname{FIRST}(\underline{\text { (ia) }}=\operatorname{FIRT}(\varepsilon \in o f)=\operatorname{FIRST}($ of $)=\{$ eff $\}$
How should s be extended? $\left[P_{\text {air }} \rightarrow \cdot\left(P_{\text {cts }}\right)\right.$, oof $]$

[Par \rightarrow () , of $]$

$\left\{\begin{array}{l}{[\text { Goal } \rightarrow \bullet \text { List }, \text { eof }]} \\ {[\text { List } \rightarrow \bullet \text { Pair }]}\end{array}\right.$
$[$ List $\rightarrow \bullet$ List Pair, eof]
$[$ List $\rightarrow \bullet$ List Pair, (] $]$
$[$ Pair $\rightarrow \bullet$
$\left\{\begin{array}{l}{[\text { List } \rightarrow \bullet \text { Pair, eof }]} \\ {[\text { Pair } \rightarrow \bullet \text { Pair })}\end{array}\right.$
$\left[\begin{array}{l}{[\text { Pair } \rightarrow \bullet(\underline{)}, \text { e of }]}\end{array}\right.$
$\left.\begin{array}{l}{[\text { Pair } \rightarrow \bullet(\underline{1}),(]}\end{array}\right\}$

CC Construction: ECo Step 3
(0) [Goal \rightarrow - List, eof]
(1) [List $\rightarrow \cdot \bullet$ List Pair, oof]
(2) [List $\rightarrow \bullet$ Pair, eof]
(3) [Pair $\rightarrow \bullet$ (Pair), eof]
(4) [Pair \rightarrow ((), oof $]_{\text {list pain }}$

Hint 1. How is lust $\rightarrow \mathbb{R} \cdot \underline{C} \underline{d}$ al instantiated?
Hint 2. What are $\mathrm{C} \rightarrow \gamma \in \mathrm{R}$? ${ }^{\text {en }} \& \notin$ FIRSI(Pa ri).
Hint 3. $\operatorname{FIRST}(\delta a)=$ FIRST (Carr ai $)=\{(\}$

$$
\begin{aligned}
& {[\text { list } \rightarrow \text { • Pis }, C]}
\end{aligned}
$$

CC Construction: COo Step 4
(0) [Goal \rightarrow - List, eof]
(5) [List $\rightarrow \bullet$ List Pair, (]
(1) [List $\rightarrow \bullet$ List Pair, eof]
(6) [List \rightarrow • Pair, (]
(2) [List $\rightarrow \bullet$ Pair, oof]
(3) [Pair $\rightarrow \bullet$ (Pair), eof]
(4) [Pair \rightarrow (() e of $]$

Hint 1. How is
Hint 2. What are $\mathbf{C} \rightarrow \gamma \in \mathbf{R}$?
Two addetröral $\angle R(1)$ iffens.
Hint 3. $\operatorname{FIRST}(\delta \mathrm{Da})=\operatorname{FIRSI}(\dot{(} C)=\{!\}$
How should s be extended?

1. $\left[\right.$ Pair $\rightarrow \cdot\left(P_{\text {ar i }}\right), \square$

CC Construction: goto

Analogy: ε-NFA to DFA
Subset construction (with lazy evaluation and epsilon closures) produces a DFA transition table

saute	$@)=0 . .9$	$s \in\{+,-\}$.
$\left\{q_{0}^{0}, q_{1}\right\}$	$\left\{q_{1}, q_{4}\right\}$	$\left\{q_{1}\right\}$	$\left\{q_{2}\right\}$
$\left\{q_{1}, q_{4}\right\}$	$\left\{q_{1}, q_{4}\right\}$	\varnothing	$\left\{q_{2}, q_{3}, q_{5}\right\}$
$\left\{q_{1}\right\}$	$\left\{q_{1}, q_{4}\right\}$	\varnothing	$\left\{q_{2}\right\}$
$\left\{q_{2}\right\}$	$\left\{q_{3}, q_{5}\right\}$	\varnothing	\varnothing
$\left\{q_{2}, q_{3}, q_{5}\right\}$	$\left\{q_{3}, q_{5}\right\}$	\varnothing	\varnothing
$\left\{q_{3}, q_{5}\right\}$	$\left\{q_{3}, q_{5}\right\}$	\varnothing	\varnothing

For example, $\delta\left(\left\{q_{0}, q_{1}\right\}, d\right)$ is calculated as follows: [$\left.d \in 0 . .9\right]$
$\cup\left\{\operatorname{EcLoSe}(q) \mid q \in \delta\left(q_{0}, d\right) \cup \delta\left(q_{1}, d\right)\right\}$

CC Construction: goto

Calculate soto(cc_{0}, ()
i.e., "next subset state" from eco taking (

